Sources of phase changes in BOLD and CBV-weighted fMRI.
نویسندگان
چکیده
Phase changes in blood oxygenation-level dependent (BOLD) fMRI have been observed in humans; however, their exact origin has not yet been fully elucidated. To investigate this issue, we acquired gradient-echo (GE) BOLD and cerebral blood volume (CBV)-weighted fMRI data in anesthetized cats during visual stimulation at 4.7T and 9.4T, before and after injection of a superparamagnetic contrast agent (monocrystalline iron oxide nanoparticles, MION), respectively. In BOLD fMRI, large positive changes in both magnitude and phase were observed predominantly in the cortical surface area, where the large draining veins reside. In CBV-weighted fMRI, large negative changes in both magnitude and phase were detected mainly in the middle cortical area, where the greatest CBV change takes place. Additionally, the phase change was temporally correlated with the magnitude response and was linearly dependent on the echo time (TE), which cannot be explained by the intravascular (IV) contribution and functional temperature change. Phase changes with the opposite polarity were also observed in the regions around the dominant phase changes. These phase changes can be explained by the application of the "Lorentz sphere" theory in the presence of relevant activation-induced changes in vessels. The volume-averaged magnetization and its demagnetization are the main sources of fMRI signal phase change.
منابع مشابه
Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation.
Spatial specificity of functional magnetic resonance imaging (fMRI) signals to sub-millimeter functional architecture remains controversial. To investigate this issue, high-resolution fMRI in response to visual stimulus was obtained in isoflurane-anesthetized cats at 9.4 T using conventional gradient-echo (GE) and spin-echo (SE) techniques; blood oxygenation-level dependent (BOLD) and cerebral ...
متن کاملEffect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI
Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...
متن کاملTemporal dynamics and spatial specificity of arterial and venous blood volume changes during visual stimulation: implication for BOLD quantification.
Determination of compartment-specific cerebral blood volume (CBV) changes is important for understanding neurovascular physiology and quantifying blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI). In isoflurane-anesthetized cats, we measured the spatiotemporal responses of arterial CBV (CBV(a)) and total CBV (CBV(t)) induced by a 40-second visual stimulation,...
متن کاملCBF, BOLD, CBV and CMRO<sub>2</sub> FMRI at 500-Ms Temporal Resolution
Q. Shen, H. Ren, T. Q. Duong Yerkes Primate Research Center, Emory Unviersity, Atlanta, GA, United States Introduction The intricate neural-vascular coupling associated with changes in neural activity forms the basis for many modern neuroimaging modalities. However, the temporal dynamics of the stimulus-evoked CBF and CBV responses and the resulting BOLD signals remain poorly understood and som...
متن کاملOrigin of negative blood oxygenation level-dependent fMRI signals.
Functional magnetic resonance imaging (fMRI) techniques are based on the assumption that changes in spike activity are accompanied by modulation in the blood oxygenation level-dependent (BOLD) signal. In addition to conventional increases in BOLD signals, sustained negative BOLD signal changes are occasionally observed and are thought to reflect a decrease in neural activity. In this study, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 57 3 شماره
صفحات -
تاریخ انتشار 2007